LOOP EQUATIONS AND THE TOPOLOGICAL PHASE OF MULTI-CUT MATRIX MODELS
نویسندگان
چکیده
منابع مشابه
Loop Equations and the Topological Phase of Multi - Cut Matrix Models
We study the double scaling limit of mKdV type, realized in the two-cut Hermitian matrix model. Building on the work of Periwal and Shevitz and of Nappi, we find an exact solution including all odd scaling operators, in terms of a hierarchy of flows of 2× 2 matrices. We derive from it loop equations which can be expressed as Virasoro constraints on the partition function. We discover a “pure to...
متن کاملLoop equations for multi - cut matrix models
The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut soluti...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولBreakdown of universality in multi - cut matrix models
We solve the puzzle raised by Brézin and Deo for random N × N matrices with a disconnected eigenvalues support: their calculation by orthogonal polynomials disagrees with previous mean field calculations. We show that this difference does not stem from a Z 2 symmetry breaking, but from the discretizeness of the number of eigenvalues. This leads to additional terms (quasiperiodic in N) which mus...
متن کاملConifold Geometries, Topological Strings and Multi–matrix Models
We study open B-model representing D-branes on 2-cycles of local Calabi–Yau geometries. To this end we work out a reduction technique linking D-branes partition functions and multi-matrix models in the case of conifold geometries so that the matrix potential is related to the complex moduli of the conifold. We study the geometric engineering of the multi-matrix models and focus on two-matrix mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics A
سال: 1992
ISSN: 0217-751X,1793-656X
DOI: 10.1142/s0217751x92003483